

Modeling Report

Project 12

Reinforcement Learning-Based Traffic Signal Control

Contributions

Maheep Brar
Nicholas Dullam

Elena Gomez

Alejandro Mayo

Zack Reynolds

Siddharth Singh

Qingyuan Yan

1. Select Modeling Technique

 1.1 Modeling technique

● Given our task of using reinforcement learning for optimizing traffic signal control, we

can break down our potential approaches into two different categories:

○ Value-based: Where we look to maximize the rewards we obtain (for example,

Q-learning), from which initial cases and decisions are sensibly random but learn

from the results of previous actions.

○ Policy-based: Where probabilities are given and iterated for each action, given

environmental and hyperparameters.

● Various optimizations have been lightly introduced – for example, the use of neural

networks for Q-table selection in the value-based approach. While these optimizations

have been made aware, we remain shallow on their implementation, as they are not our

main focus. These experiments will be noted further in section 3 of the report.

● The reinforcement models we will implement and introduce in this report are a Deep Q-

Network (DQN), Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC).

1.2 Modeling assumptions

● One of the main modeling assumptions for our tasks involves our environment – as noted

in prior reports, rather than basing our models strictly upon the dataset provided, we

opted to use the traffic simulation tool SUMO – using our original dataset as a form of

baseline aggregate. In turn, our assumption stands that the SUMO environment is

representative of real-world traffic scenarios, given our configurations.

○ While representative of aggregate traffic information, as we noted, it comes with

the assumption that no accidents or excessive reaction times will be simulated,

however, emergency stops and other abrupt behaviors can be anticipated and

regarded in our state.

○ All inputs to the model flows are drawn with the assumption of a relatively

normal distribution – including intersection entry speeds, and turning ratios, with

the expected value and standard deviation representative of our aggregate

standards noted in our data preparation report, post-smoothing. This assumption

is drawn as it stands infeasible and counterintuitive to directly represent vehicles

from the dataset; as we believe, the introduction of noise will further improve the

model’s generalizations.

○ As prospected after our previous report, a reduction of scope has been drawn

from optimizing Lankershim Boulevard to a single 4-way intersection along itself

– for this task, we’ve chosen intersection 2. All aggregate statistics remain on the

basis of the entire boulevard, while turning ratios, as are to be noted, will be

relevant to the given intersection. We draw the assumption, of the reduction of

scope, on the performance of gains of intersection 2 being generalized to the

remainder of the boulevard given the use of the same modeling techniques on

each given intersection without awareness of a shared intersection state.

 INITIAL SCOPE REDUCED SCOPE

○ Intersection entry speed, as noted to be normally distributed, is also assumed to

be similar to the behaviors of the entire boulevard; while turning ratios are

explicit to our given intersection, entry speeds are generalized from the

boulevards aggregate, smoothed, velocities. For the sake of the model, zero

velocities have been removed, given our use of a desired maximum speed on the

vehicle types of the simulation, leading to an average velocity, post-smoothing,

of roughly 11.3 m/s, alongside a factored standard deviation of 0.69; the speed

factor also has a lower cap of 0.75 and an upper cap of 2, as to include the peaks

noted in our data preparation report, while removing obvious idle states. Turning

ratios/volume for the vehicles can also be found in the data preparation report for

intersection 2 with no further adjustments.

○ An assumption is finally drawn that the volume of traffic entering intersection 2

(as noted in our prior reduction of scope) at each time is predetermined and will

not change unpredictably as the algorithm is being trained.

● We will also try to keep a random percentage of swaps (typically called signified by

gamma) for specific cases and to avoid some out-of-scope scenarios.

● It is presumed that both the set of possible states for the system and the set of possible

actions for the agent are discrete and finite. Discrete action spaces limit our choice of RL

algorithms, as many only work with continuous action spaces.

2. Generate Test Design

● When it comes to generating our test design, in our case, given access to prior works in

the field, we intend to draw comparisons directly to competing models over shared

evaluation statistics – primarily on the basis of vehicle delay/wait times. What must be

noted before drawing these comparisons is the importance of consistent state – that is,

ensuring similarity of builds in SUMO, consistent intersection design patterns, alongside

vehicle speeds and ambiguous environmental state parameters. To accomplish this, we

intend to create or share a standard configuration among competing builds when possible;

however, due to hardware limitations, equitable build parameters (including sample size,

depth of neural networks, and other resource-intensive hyper-parameters) may be

minimized to ensure proper builds – these changes, while necessary, may reduce the

validity of any comparisons drawn. If infeasible, efforts may be made to draw our

configuration similar to the originally reported work, where we’ll compare the results

from there.

● As was alluded to prior, when it comes to evaluating the performance between competing

models, we have a few intended evaluative statistics:

○ Mean wait time: The mean wait time, an approach taken by most pre-existing

models, takes the average wait time of vehicles passing through the given

intersection as a basis of effective flow. We aim to meet or achieve marginal

improvements over existing models, given our limitations, of up to roughly 10%

for our given state when assessing mean wait times. Against traditional signal

timings, we aim for up to a 50% improvement in mean wait time.

○ Max wait time: The max wait time, an approach more closely-nit to our intended

experimentation, measures the maximum wait time a vehicle may experience in a

given intersection. This serves as a basis of measurement for the unrealistic

priority a model may provide for a given lane of the intersection.

■ While an interesting evaluative statistic, we reserve this for

experimentation if time allows – as for the time being, we’ll be focused

on mean wait time improvement. Regardless, similar to the mean wait

times, if evaluated, we can aim to meet or offer marginal improvements

over existing models, for up to a roughly 10% improvement in average

max weight times. Against traditional signal timings, we aim for up to a

50% improvement, to be paired alongside the improvements noted in

mean wait time.

● Finally, we evaluate the obtained outcomes to verify whether we have accomplished our

objective. If we fail to meet our goal, adjustments to our models may be made in an

attempt to enhance the model's performance relative to our evaluations.

3. Build the Model

3.1 Parameter setting

● When setting our parameters, there are a few notable factors that directly affect the rate at

which the model may learn at each “point”:

○ Learning rate: The importance drawn to new results – the higher the learning

rate, the increased impact of the new result.

○ Discount rate: The value applied to reward values after each iteration – a higher

discount rate leading to a more rapid decline in anticipated reward as time

progresses.

○ Exploration rate: The percentage of “random” choices applied to the given model

– aiding in loop avoidance while incentivizing more experimental actions for

long-term gains.

● These parameters help to differentiate the ‘exploring vs exploiting’ phenomenon. While

exploring, we tend to have high exploration value in an attempt to learn – where we try to

develop the initial “thinking” process. While exploiting, the exploration value is low, and

the learning rate decreases in an attempt to learn and adapt to specific situations – it’s

worth noting that here, discount rates are often increased in an attempt to reach good

solutions as fast as possible.

● While not necessarily applicable as direct parameters, it’s best to note some further

configurations we may offer more model adjustments and improvement:

○ Reward Function: The reward function, incorporating state to drive incentive for

selection of preferred actions – in our case, this will be on the basis of

minimizing average wait times, for which inverting the cumulative wait time is

common practice/punishment.

○ Network Architecture: The neural network architecture used by each of the RL

algorithms. Because of our limited compute and small action space, we keep the

neural networks small (only a few fully connected layers at most). This is often

used for policy selection, as is the case with DQNs.

● And, as was noted in section 1 of the report, while not directly model parameters, further

parameters of state, including vehicle speed distributions and turning ratios/counts must

be recognized as configurations. Their intended behaviors have since been outlined in our

explanation of scope.

3.2 Models

● For our model development, we used Python with the aid of libraries including

TensorFlow, Keras, rllib, and sumo-rl – baseline projects were also referenced and

utilized in our experimentation, including Intellilight for initial prospects in using a DQN

model – later DQN implementations were more in reference to the aforementioned use of

rllib and sumo-rl, due to their increased workflow and compatibility.

○ We utilized rllib more specifically, for its DQN, PPO, and SAC model

implementations and integrations. These implementations will be noted in our

model descriptions.

● The system's performance should be predicted using a model that is built to learn from

how the environment, which includes traffic patterns, intersection layouts, and other

external variables, interacts with the traffic light control system.

● In reinforcement learning, the agent interacts with an environment by taking actions and

receiving rewards (positive or negative). The goal of the agent is to learn a policy, and

illicit rules for choosing actions based on the state environment.

○ Normally with reinforcement learning, we have policy-based and value-based

approaches: as noted prior, with a policy-based approach we try to learn a policy

by setting the situation to an action, normally via a function, while with the

value-based approach, we look for the option that maximizes the reward that can

be expected. In our case, we will set our policy via a neural network that takes

into account the number of cars stopped.

3.3 Model description

● We have 3 principal elements: the agent, the environment/state, and the iterations

between them. In this case, the traffic light controller is the agent, and everything else is

part of the environment.

● The overall goal of the model is to find the optimal policy that maximizes the return. The

return is a function of a sequence of rewards weighted by γ (discount rate). In order to

predict the expected return, two different functions are necessary. The state-value

function Vπ (s) estimates how beneficial it is to be in a particular state (s) under policy π.

On the other hand, the state-action function Qπ (s, a) estimates how beneficial it is to take

a particular action (a) in state s under policy π. These functions help the agent to choose

the most appropriate actions in order to maximize the expected return.

● We utilized rllib, a library for implementing reinforcement learning models as noted

prior, to construct our models which consist of Neural Networks or other functions that

interact with the reward. While rllib does not provide complete control, it offers various

forms of tuning and adjustment, including the ability to choose between multiple Neural

Networks, alongside how rewards are distributed within a certain range.

● In our models, we explored a few different reward functions:

○ Cumulative vehicle delay (default): 𝑟𝑡 = 𝐷𝑎,𝑡 −𝐷𝑎,𝑡+1

■ This reward represents the change in total vehicle delay from the

previous time step. It is more exploitative, with no long-term rewards

○ Vehicle queue reward function: 𝑟𝑡 = −𝛴𝐶𝑠𝑡𝑜𝑝

■ This reward represents the total number of vehicles that are waiting in

the intersection as a negative reward.

● As for the models we chose to explore, we’ve worked with the following three:

○ PPO - Proximal Policy Optimization is a policy gradient reinforcement learning

algorithm – a subset of the policy-based methods we introduced earlier in the

report. This means it seeks to optimize the policy directly, rather than estimating

a value function to start. To optimize the policy, policy gradient methods utilize

gradient descent with respect to the expected return. PPO improves the stability

of training by limiting the changes made to the policy per step. It is simple to

implement, easy to train, and works well on discrete action spaces. PPO is an on-

policy algorithm, meaning it learns based off of the current policy the agent is

using. We’d expect PPO to perform well on this task, with improved

performance over DQN.

■ Implemented with a 2-layer fully-connected neural network, and

experimented with both cumulative vehicle delay, and vehicle queue

reward functions.

○ DQN - Deep Q-Networks are the deep learning version of Q-learning, utilizing

neural networks to estimate the q-values for all states and actions. A q-value is

the expected reward given a state and action. DQN is a value-based method,

meaning it uses this estimated value to determine the best policy. DQNs are

simple to implement – being an off-policy method, it doesn’t utilize the current

policy to learn and can reference previous policies from a replay buffer. We’d

consider this as our baseline reinforcement learning model.

■ Implemented with a 2-layer fully-connected neural network, and

experimented with both cumulative vehicle delay, and vehicle queue

reward functions.

○ SAC - Soft Actor-Critic is a variant of the Actor-Critic model that is sample

efficient and generalizes well. Actor-Critic models learn both a value and policy

function, with the actor learning the policy and the critic learning the value

function and critiquing the actor’s policy. Soft Actor-Critic modifies the

objective function and is off-policy, meaning it can use previous experiences

from a replay buffer, similar to the DQN. It seeks to maximize entropy, meaning

it maximizes the randomness of actions while still completing the task. We’d

expect SAC to generalize well to other intersections compared to our other

models.

■ Implemented with a 2-layer fully-connected neural network, and

experimented with both cumulative vehicle delay, and vehicle queue

reward functions.

● Our final objective is to create our own system for model implementations, establishing

all relationships and enabling us to make final decisions about our results. This will allow

us with the following:

○ Modifying specific parameters to control how the learning or discount rate

updates, which, given our limited configurations in this aspect, is a significant

change – as the library is expected to make optimal choices. Nevertheless, we

wanted to observe how it influenced our selections..

○ Specify varied reward functions – for instance, we could use a wait-time

polynomial to derive the reward function, aiming to minimize both the average

and maximum wait times (decreasing in the process a bit the average), as the

current interface imposes limitations on us in this regard. This exploration is

more broadly noted in our reevaluation of parameters.

● We have attempted this final step, through the use of Intellilight as a baseline, but have

encountered significant issues. Although we were able to run it, we ran into problems

during the training process, and we need to investigate whether it was due to an error or a

parameter setting that exceeds our hardware limitations. We can not use Purdue virtual

machines, such as MC19, due to problems integrating SUMO and user restrictions for the

installation of binaries. For the time being, our current implementations and integrations,

while limiting in some configurations, have been suitable for answering our project

scope. Re-evaluation of this final, more configurable system, would be ideal with further

developments beyond our current scope if time was to allow.

4. Assess Model

4.1 Model assessment

● We will look at the final results obtained after a short period of training, on this case we

will not be able to apply certain statistics such as on classification but only see how well

we have developed:

Reward

Function

Algorithm Avg accumulated

wait time

Avg speed Avg stopped

Vehicle

Delay*

PPO 9953.829 0.2534363 72.37255

PPO EP4 6508.9 0.28 62.62

DQN 8757.469 0.3116416 60.31016

DQN EP13 6279.17 0.374 50.03

SAC 21262.1 0.1536264 86.00357

SAC EP11 14941.8 0.189 61.6

Queue

PPO 10746.65 0.2279387 64.11408

PPO EP51 8311.144 0.2710836 73.82175

DQN 11206.79 0.434218 57.19251

DQN EP8 3619.561 0.2711 34.285

SAC 15953.56 0.2523465 64.27273

SAC EP9 10600.34 0.281 76.647

* The models trained on the Vehicle Delay reward function were limited to speed

distributions declared by the default config of SUMO, and remain unchanged due to time

constraints – those in the Queue reward function are not exposed to this issue.

Note: the evaluation statistics addressing specific episodes represent the best performers

for a given model – while not necessarily being the last one.

● We can see how the DQN model generally worked better, given a value function of

vehicle queues relative to the other models on the basis of average accumulated wait time

– holding the best case performance under that regard, while still maintaining competitive

performance in maximizing average speed, and minimizing average stops. As for some of

the worst performers, SAC performed among the worst when operating with a value

function of vehicle delay, offering the worst average accumulated wait times, average

speeds, and average stops, among all experimented models.

● It is also interesting to note how the delay reward got a bit better results on the NN that

perform the best which can be attributed both to the own reward function (which is the

standard use in this field) and the fact that the distribution was different – noting that we

will need to solve the computational issues before comparing final results.

● Also, some insightful conclusions can be drawn from the results on the relation of the

evaluative statistics, as we see how most of the variables are correlated – like the highest

mean speeds alongside the lowest wait times, or the lowest mean wait times with the

lowest average total cars stopped.

○ In some cases we see lower volumes of cars stopped but higher wait times,

something that could be because in some cases we see how the policy tends to let

some of the cars wait for longer periods of time in exchange for a lower overall

average wait time.

● Given the complexity of the final policies, alongside the black-box nature of the weights

for the neural network decision-making processes, such values are not displayed.

● We still have not reached the best-case expected result – one of the main reasons is

training, for which we are aware of extended parameters and training times capable of

increasing performance; however, given both hardware and time constraints, potential

improvements with changes of configuration are drawn into question.

● It’s important to note that results may not be directly indicative of the models' overall

performance – as some of the models tend to perform better with exploration, while

others may be in the exploitation phase.

● We do not address model generalizability in this report.

4.2 Revised parameter settings

● Now, let’s take a look at the reward progressions of the given models, in terms of total

rewards per episode:

○ Waiting Time Rewards:

○ Queue Rewards:

Note: episodes 1 and 2 from each of the above model

expressions have been excluded, due to rllib’s initialization

behaviors.

● The difference in the number of episodes between model types is due to rllib’s

implementation of these models. All models were run for 10 iterations, but PPO would

make more updates and therefore have more episodes.

● One thing to note when evaluating our above reward progressions, is our limited

convergence. We believe, given our limited training times, that the model is not given an

adequate chance to develop its’ policy enough for convergence to appear in model

performance and evaluations. The constraints and aspirations of such training times have

been previously noted in section 4.1.

○ It’s also important to recognize PPO’s behavior given its extension of episodes

relative to the other models, demonstrating better convergence and more

“reasonable” results – which further attributes to our assumption drawn on the

impact of episodes or general training times on the convergence of total rewards.

○ Also, good results on the first iterations may come from the hard exploration

phase, where the model gives a lot of value to the randomness parameter. It looks

like the approach of more or less random changes in light patterns performs

relatively well on this type of problem.

● As for hyperparameter revisions, apart from state, we are limited in our adjustments to

those alluded to prior; however, we could experiment with adding new layers to our best

model. One potential approach is to incorporate a recursive neural network, which may

improve learning by taking into account the repetitive nature of the actions and

environment; the neural networks themselves, apart from their depth, offer limited

hyperparameters.

● Another way we may look to revise our models for better evaluative performance, would

be in the realm of adjustments to the reward functions. We have some already set up

rewards functions, as demonstrated in the model descriptions, being that of a cumulative

average wait time, and average vehicle queue. These reward functions, while providing

insight and remaining a relatively common standard, could be optimized for

improvements towards what we believe would be maximum wait times for vehicles. An

adjusted reward function, such as a cumulative average wait time, where the accumulator

applies an exponent to vehicles’ individual wait times, could leverage a balance between

optimizing overall average wait times, alongside maximum wait times for individual

vehicles – something that would resemble a more realistic and desired environment.

● Changes towards our environmental configurations could also offer some insight:

○ Vehicle flows: Adjustments to have probabilistic models rather than constants –

introducing both moments of high and low flow for testing the generalizations of

the model.

■ Here it is important to reattribute our note on the reduction of scope,

from the four intersections to only one. If time allows, exploring the

possibility of a shared state, alongside an independent state of models for

each intersection along the boulevard would be an interesting attribution;

as it could have a direct impact on more realistic flows for a given

intersection, alongside, of course, the inherent performance gains. Prior

works, including Colight, are good references for diving into this

phenomenon.

○ Vehicle speeds: Seeing if constant speeds from cars would bring up better results

– which could be interesting to take into consideration due to the possibility of

this fact in the future years with automobile cars.

